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Abstract

We present a direct numerical simulation technique for droplet emulsions of Newtonian–Newtonian system in simple
shear flow. The Lees–Edwards type boundary condition has been incorporated with the sliding bi-periodic frame of Hwang
et al. [W.R. Hwang, M.A. Hulsen, H.E.H. Meijer, Direct simulation of particle suspensions in sliding bi-periodic frames, J.
Comput. Phys. 194 (2004) 742] for the continuous flow field problem and the level-set method with the continuous surface
stress (CSS) formulation has been used for accurate description of the sharp interfaces. Based on the standard velocity–
pressure formulation of the finite-element method, we use the mortar element method for the implementation of the sliding
periodicity and employ the discontinuous Galerkin (DG) method for the stabilization of the interface advection equation.
We present numerical results on the morphological development for a single, two and multiple drops in sliding bi-periodic
frames for the demonstration of the feasibility of the present method in investigation of the relationship between the mor-
phology and the bulk material responses such as the shear viscosity and the first normal stress difference.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we present a direct numerical simulation technique for Newtonian droplets suspended in a
Newtonian fluid in simple shear flow, which usually involves complex morphological changes such as
deformation, breakup and coalescence. The dynamics of the interface is determined by both the flow field that
orients the interface and the interfacial tension which opposes this effect. Especially, we are interested in the
inter-relationship between the morphological changes and the bulk material responses such as the shear vis-
cosity and the first normal stress difference of this micro-structured material. Understanding this relationship
is particularly important in the polymer industry, when blending two or more existing polymers. When two
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doi:10.1016/j.jcp.2006.12.012

* Corresponding author. Tel.: +82 55 751 6295; fax: +82 55 757 5622.
E-mail addresses: sjkim1@andong.ac.kr (S.J. Kim), wrhwang@gsnu.ac.kr (W.R. Hwang).

mailto:sjkim1@andong.ac.kr
mailto:wrhwang@gsnu.ac.kr


616 S.J. Kim, W.R. Hwang / Journal of Computational Physics 225 (2007) 615–634
immiscible polymers are compounded in a mixing equipment, one often observes the formation of the dis-
persed two-phase mixture in which one component forms the discrete phase (drops) dispersed in the other
component of the continuous phase (matrix). During the past decades numerous investigators have studied
this system. The literature is reviewed, for example, by Han [1] and Tucker and Moldenaers [2]. However,
the fundamental understanding of the droplet emulsion is still very limited. The main reason is that drops
are deformable bodies and there are complicated many-body hydrodynamic interactions between them.

In order to deal with such a problem computationally, which is a many-deformable-body and time-depen-
dent problem in nature, one needs a direct simulation technique that employs a well-defined periodic domain
concept such that a single unit cell problem with a small number of droplets can represent the emulsion system
containing a large number of droplets, eliminating the complicated drop-wall interaction. Moreover, the
method should admit the usage of state-of-the-art viscoelastic constitutive equations in considering further
extension to the polymeric blend which is of great importance in industry.

In 1972 Lees and Edwards [3] proposed a bi-periodic domain concept for Molecular Dynamics simulations
by describing sliding boundary conditions for simple shear flow, which is nowadays called the Lees–Edwards
boundary condition (LEbc). This scheme has been used with the Lattice Boltzmann method to solve the par-
ticle suspension [4], the phase separation [5] and the concentrated emulsion problems by a Lagrangian–Eule-
rian method with a re-meshing technique using Voronoi tessellation [6]. Recently, Hwang et al. [7] developed
the sliding bi-periodic frame to extend the LEbc to the continuous field problems and combined it with the
finite element method along with the fictitious-domain/mortar-element method to solve the particle suspen-
sion in the Eulerian fixed mesh. Furthermore, Hwang et al. [8] applied this scheme to the particle suspension
formulated with a nonlinear viscoelastic fluid by incorporating the DEVSS/DG (Discrete Elastic Viscous
Stress Splitting/Discontinuous Galerkin) method, which is one of the most robust formulation for the visco-
elastic flow simulation currently available [10]. In addition, the sliding bi-periodic frame has been also adapted
for the diffuse–interface method for simulations of droplet emulsion problems based on the stream function-
vorticity formulation using the spectral element method (Anderson et al. [9]).

The numerical analyses on the drop deformation are numerous elsewhere: typically in Refs. [11–14] for the
drop deformation by using the moving interface. For example, in our previous study [12,13], the finite element
analysis for two-phase fluids was carried out in the entrance region of a cylindrical tube by a auto-remeshing
technique. On the other hand, various numerical methods in a purely Eulerian framework have been devel-
oped that use a fixed mesh for the entire computation: e.g. the volume-of-fluid (VOF) method [15], the
level-set method [16–18] and the diffuse–interface method [9,19]. In these methods, the interfacial tension
can be treated either by the body force or by the surface stress, which are called the continuous surface force
(CSF) model [20] and the continuous surface stress (CSS) model [21], respectively.

Our objective is the development of a direct numerical method to investigate the morphological develop-
ments in liquid–liquid emulsions and at the same time to investigate the relationship between the bulk material
behaviors and the morphological information under simple shear flow. We employ the sliding bi-periodic
frame of Hwang et al. [7] as a representative unit computational domain to treat the many-body problem
in the droplet emulsion under simple shear flow. Also, to describe the sharp interface between the drop
and the matrix fluid, we employ the level-set method, which is a popular and accurate method for the interface
capturing, along with the CSS formulation.

The paper is organized as follows. First in Section 2 we define the problem and explain the basic governing
equations. In Section 3 we explain the numerical methods and implementation techniques. Then in Section 4
we discuss expressions for the bulk stress in the sliding bi-periodic frame with the continuous surface stress
formulation. In Section 5, we show results of three sets of example problems: simple shear flow with a single
drop, two drops and multiple drops. Finally we end up with some conclusions.

2. Modeling

2.1. Problem definitions

In this paper, we consider a large number of deformable Newtonian droplets suspended in another New-
tonian matrix fluid in simple shear flow. We restrict ourselves to two-dimensional systems and neglect inertia
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for both fluids. Fig. 1 shows the sliding bi-periodic frames with a possible deformed drop configuration in a
single frame. As time goes on, each frame translates at its own average velocity of the flow inside the frame and
thereby rows of the frames slide relatively to one another by the amount D, which is determined by the given
shear rate _c, the elapsed time t, and the height of the frame H:
Fig. 1.
possib
D ¼ _cHt: ð1Þ
The sliding velocity of the frame is determined by the given shear rate and a representative vertical position of
the frame based on an arbitrary global reference. Only the relative velocity inside the frame is important. In
addition, the sliding frame is bi-periodic: the left and right boundaries satisfy the usual periodic condition and
the upper and lower boundaries are subject to the time-dependent sliding periodicity described in Eq. (1).
Therefore the motion of the drops as well as of the matrix fluid is subject to the time-dependent coupling be-
tween the upper and lower boundaries, in addition to the usual periodic condition in the horizontal direction
[7].

As mentioned, a sliding bi-periodic frame, denoted by X, is the computational domain of this work (Fig. 1).

The four boundaries of the domain are denoted by Ci (i = 1,2,3,4) and the symbol C will be used for
S4

i¼1Ci.
The Cartesian x and y coordinates are selected as parallel and normal to the shear flow direction, respec-
tively. The regions occupied by the drops are denoted by DiðtÞ ði ¼ 1; . . . ;NÞ and N is the number of drops
in a single frame at a certain time. We use a symbol D(t) for

SN
i¼1DiðtÞ, a collective region occupied by drops

at a certain time t. The boundary of the ith drop Di is denoted by Ui and the symbol / will be used for
S4

i¼1Ui.
The vector n is the outward unit normal vector on the drop interface.

2.2. Governing equations

2.2.1. Equations for the matrix fluid and drops

The set of equations for the fluid domain is given by
r � rm ¼ 0; in X n DðtÞ; ð2Þ
r � um ¼ 0; in X n DðtÞ; ð3Þ
rm ¼ �pmI þ 2gmDm; in X n DðtÞ: ð4Þ
Eqs. (2)–(4) are equations for the momentum balance, the continuity and the constitutive relation, respec-
tively. The subscript m denotes the matrix phase and um, rm, pm, I, Dm and gm are the velocity, the stress,
the pressure, the identity tensor, the rate of deformation tensor and the viscosity, respectively, for the matrix
phase. There is no explicit boundary condition on the domain boundary C. Instead we apply the sliding bi-
periodic frame constraint on C later to assign simple shear flow condition, fulfilling the bi-periodicity of
the computational domain.
D2

Δ

initial

at time t

Ω

Γ1

sliding biperiodic window

L

H D

D

D4

3

i

D
1

i

γ
.

γ
.

y
(L, H)

n

Φ

4Γ Γ
2

x
(0, 0)

Γ3

Sliding bi-periodic frames in simple shear flow (left). A sliding bi-periodic frame is the computational domain of this work and a
le deformed drop configuration inside the domain is indicated (right).



618 S.J. Kim, W.R. Hwang / Journal of Computational Physics 225 (2007) 615–634
The governing equations for a region occupied by a drop Di at a certain time t can be written as:
r � rd ¼ 0; in DiðtÞ; ð5Þ
r � ud ¼ 0; in DiðtÞ; ð6Þ
rd ¼ �pdI þ 2gdDd; in DiðtÞ: ð7Þ
Note that the subscript d denotes the drop phase. Eqs. (5)–(7) are the equations for the momentum balance,
the continuity and the constitutive relation, respectively, which are exactly the same as fluid domain equations
in Eqs. (2)–(4) except for the drop viscosity gd.

At the interface U between the drop and the suspending matrix, the following stress balance must be
satisfied:
n � rm � n � rd ¼ fjn; on U; ð8Þ

where n is the local unit outward normal vectors to the interface and the variables f and j denote the inter-
facial tension and the local mean curvature on the interface.

2.2.2. The level-set function

As mentioned in Section 1, there are several numerical approaches in handling the interface of the two-
phase fluid system: the interface-tracking method, the volume-of-fluid method, the diffuse–interface method,
the level-set method, etc. In the present work, the level-set method is employed for the description of the inter-
face. The interface is not explicitly tracked but is defined to be the zero level set of a smooth function /. The
evolution equation for the level-set function / can be expressed with the initial condition:
o/
ot
þ u � r/ ¼ 0; /jt¼0 ¼ /0; in X: ð9Þ
The initial level-set function /0 is prescribed as the signed distance, which satisfies the following signed dis-
tance function property:
jr/j ¼ 1; and /jU ¼ 0; ð10Þ

where / is positive outside the drop and negative inside. When the function / is seriously distorted as time
evolves, it is necessary for the level-set function to restore the distance function property for the accurate solu-
tion of the evolution equation (Eq. (9)).

2.2.3. Governing equations with the CSS model
The governing equations for two separate phases can be expressed in a unified way for the entire domain, if

the interfacial tension could be treated properly. Brackbill et al. [20] proposed the continuous surface force
(CSF) model that considers the interfacial tension as a continuous body force acting on the interface. The
body force, denoted by fs, is given by:
fs ¼ �fjndðdÞ; ð11Þ

where d and d are the signed distance function and the Dirac delta function, respectively. In the continuous
surface stress (CSS) model [21], the body force in Eq. (11) is replaced by the divergence of a stress tensor
ss, the continuous surface stress, as follows:
ss ¼ fðI � nnÞdðdÞ; �r � ss ¼ f s: ð12Þ

In this model, the interfacial tension is represented by the surface stress tensor ss that can be added in the con-
stitutive equation as the additional stress:
r ¼ �pI þ 2gDþ ss; in X: ð13Þ

With this setting, the momentum balance and the continuity equation for the entire computational domain
can be written simply by
r � r ¼ 0; in X; ð14Þ
r � u ¼ 0; in X: ð15Þ
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We note that the viscosity g in Eq. (13) can be taken with a jump across the interface, i.e., g = gm for / > 0,
and g = gd for / < 0.

2.2.4. The sliding bi-periodic frame constraints
In the case of Newtonian flow simulation without considering drop deformation only two conditions need

to be satisfied on the sliding bi-periodic frame boundary C: the continuity of the velocity field and the force
balance. These conditions have been discussed in details in Hwang et al. [7]. However, in the present work with
the level-set method, one needs an additional boundary condition, the inflow condition for the level-set func-
tion / that is convected with the fluid velocity. Since the interface which crosses a boundary of the domain
should re-appear on the corresponding periodic boundary, the inflow condition implies the continuity of /
between the periodic boundaries. The three conditions along the horizontal direction between C2 and C4

can be summarized as follows:
uð0; yÞ ¼ uðL; yÞ; y 2 ½0;H �; ð16Þ
tð0; yÞ ¼ �tðL; yÞ; y 2 ½0;H �; ð17Þ
/ð0; yÞ ¼ /ðL; yÞ; y 2 ½0;H �; ð18Þ
where the vector t denoting the traction force on the boundary.
The conditions for the sliding periodicity in the vertical direction are more complicated because of the time-

dependent coupling between C1 and C3 as in Eq. (1). Below are the condition for the velocity continuity, the
force balance and the continuity of the level-set function, respectively:
uðx;H ; tÞ ¼ uðfx� _cHtg�; 0; tÞ þ f ; x 2 ½0; LÞ; ð19Þ
tðx;H ; tÞ ¼ �tðfx� _cHtg�; 0; tÞ; x 2 ½0; LÞ; ð20Þ
/ðx;H ; tÞ ¼ /ðfx� _cHtg�; 0; tÞ; x 2 ½0; LÞ; ð21Þ
where f ¼ ð _cH ; 0Þ and {Æ}* denotes the modular function of L. (For example, {1.7L}* = 0.7L and
{�1.7L}* = 0.3L.)

In the weak formulation, the kinematic constraints (Eqs. (16) and (19)), called the sliding bi-periodic frame
constraints, are usually combined with Lagrangian multipliers and then the associated force balances (Eqs.
(17) and (20)) are satisfied implicitly through the multipliers. The continuity conditions for / (Eqs. (18)
and (21)) will be treated separately through the jump convection term in the discontinuous Galerkin (DG) for-
mulation, which will be discussed in Section 3.1.
3. Numerical methods

We derived the weak form for the particle suspensions with the sliding bi-periodic frame constraint in the
previous work [7]. Now we extend our previous formulation to incorporate the interfacial tension in the drop-
let emulsion problem. We use the discontinuous Galerkin (DG) method of Fortin and Fortin [22] for the sta-
bilization of the convection equation of the level-set function (Eq. (9)).
3.1. Weak form

As we did in our previous work [7], we introduce two different Lagrangian multipliers, kh and kv, which are
associated with the kinematic constraint equation for the periodicity in the horizontal direction (Eq. (16)) and
that for the sliding periodicity in the vertical direction (Eq. (19)):
kh ¼ kh
x ; k

h
y

� �
2 L2ðC4Þ2; kv ¼ kv

x ; k
v
y

� �
2 L2ðC3Þ2:
Introducing the separate functional spaces U, P and / for u, p and /, respectively, over the whole domain
including the interior of the drop, the weak form for the entire domain can be constructed, along with the
DG formulation for the evolution equation of the level-set function:



620 S.J. Kim, W.R. Hwang / Journal of Computational Physics 225 (2007) 615–634
For t > 0, find u 2 U, p 2 P, / 2 U, kh 2 L2ðC4Þ2, kv 2 L2ðC3Þ2 such that
�
Z

X
pr � vdAþ

Z
X

2gD½u� : D½v�dAþ kh; vð0; yÞ � vðL; yÞ
� �

C4
þ ðkv; vðx;H ; tÞ � vðfx� _cHtg�; 0; tÞÞC3

¼ �
Z

X
ss : D½v�dA; ð22Þ

Z
X

qr � udA ¼ 0; ð23Þ
Z

X
w

o/
ot
þ u � r/

� �
dA�

X
e

Z
Cin

e

wð/� /extÞðu � neÞds ¼ 0; ð24Þ

ðlh; uð0; yÞ � uðL; yÞÞC4
¼ 0; ð25Þ

ðlv; uðx;H ; tÞ � uðfx� _cHtg�; 0; tÞÞC3
¼ ðlv; f ÞC3

; f ¼ ð _cH ; 0Þ; ð26Þ
/jt¼0 ¼ /0; in X: ð27Þ
for all v 2 U, q 2 P, w 2 U, lh 2 L2ðC4Þ2, lv 2 L2ðC3Þ2. In Eq. (24), ne is the unit outward normal vector on the
boundary of an element e, Cin

e is the part of the boundary of element e where u � ne < 0 and /ext is the level-set
function in the neighboring upwind element. The inner product ð�; �ÞCj

is the standard inner product in L2ðCjÞ:
ðl; vÞCj
¼
Z

Cj

l � vds:
We have several remarks on the weak form in Eqs. (22)–(27).

(1) The level-set function / from Eq. (24) will be used to determine the signed distance function d(x) in Eq.
(12) by a direct geometrical re-distancing method. The re-distancing technique will be explained in Sec-
tion 3.2.

(2) The inflow condition of the level-set function (Eqs. (18) and (21)) on the domain boundary has been
incorporated with the DG formulation (Eq. (24)), by taking the external value /ext from the coupled
position of the corresponding periodic boundary.

(3) Introducing a higher order interpolation of /, one can simply increase the accuracy in determining the
location of the interface with the subdivision of the element and the distance function d avoiding a large
number of coupled equations, since the DG method uses discontinuous interpolation within the element
level. (The sub-division of the element will be discussed later in Section 3.2.)

(4) To obtain simple shear flow in the x direction with the upper sliding boundary velocity of 1
2

_cH and that
of the lower one of � 1

2
_cH , we assign a zero velocity at the center of C4 for all problems in this work [7].

(5) The pressure level of the fluid domain is determined by specifying one of the normal component of the
Lagrangian multipliers on Cðkh

x or kv
yÞ, since the multiplier can be identified as the traction force [7].

3.2. Interface capturing

As the level-set function evolves in time, the distance function property of Eq. (10) is no longer satisfied. In
this case the level-set function has to be re-initialized to restore the property of the signed distance function,
usually by solving a proper partial differential equation. The accuracy of the signed distance function is crucial
for the evaluation of the interfacial stress ss. In this work, we obtain the signed distance function by a direct
geometrical re-distancing method as explained below.

The level-set function is the solution of the convection equation (Eq. (9)). Once the level-set function is set,
one can find a finite number of discrete line segments along the interface with the level-set function being zero.
We use a one-dimensional search on the element boundary (or sub-element boundary which will be discussed
later). Then the distance function for a node in the computational domain is determined by the shortest dis-
tance from the node to the line segments. The sign of the distance function is assigned the same as that of the
level-set function. In this manner, the new distance function can be obtained and we call this the direct geo-
metrical re-distancing scheme [23]. For a given domain discretization, the accuracy of the distance function
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highly depends on the accuracy of the line segments for the interface description and the accuracy of the line
segments is determined by the accuracy of the level-set function. The DG method in solving the evolution
equation of the level-set function is particularly preferred, since one can easily introduce a higher-order inter-
polation for the level-set function without increasing the computational cost seriously due to the minimal cou-
pling between elements of the DG method.

We use the discontinuous bi-quadratic interpolation for the level-set function in this study. At least the sec-
ond-order accuracy of the level-set function is necessary, in that the number of line segments can be increased
to obtain the better description of the interface simply by changing the degree of sub-division in the element.
(In case of the linear interpolation of the level-set function, the subdivision of an element hardly improves the
accuracy of the distance function.) The line segments are searched along boundaries of the sub-divided ele-
ment as shown in Fig. 2. We tested several degrees of subdivision from 1 · 1 to 8 · 8 for an element. We dis-
cuss the effect of the subdivision on the solution accuracy in Section 5.1. It would be worthwhile to mention a
possible extension of this direct geometrical re-distancing scheme for 3D problems. In 3D, one has to discrete
surface segments composed of triangular elements. Once the level-set function is set in an element (or sub-ele-
ment), a finite number of discrete triangular meshes on the interface surface with the level-set function being
zero in the element. The distance function for a given node is determined by the shortest distance from the
node to the discrete surface elements.

Once the distance function is set, we evaluate the interfacial stress ss using Eq. (12). The delta function d
and the unit normal vector n in Eq. (12) can be evaluated in terms of the signed distance function. To describe
the delta function numerically, we introduce a smooth continuous function:
Fig. 2.
indicat
dðdÞ ¼
1
2eþ 1

2e cos pd
e

� �
for �e 6 d 6 e;

0; otherwise;

�
ð28Þ
where e is chosen 1.5h with h being the mesh size. We note that the normal vector n is the gradient of the
signed distance function whose magnitude is always equal to one. That is, the interfacial stress ss can be eval-
uated as
ss ¼ fðI �rdrdÞdðdÞ: ð29Þ

The evolution of the level-set function is performed separately from the signed distance function and the
signed distance function is used mainly to evaluate the interfacial stress ss (Eq. (29)). However, we re-initialize
the level-set function using the signed distance function at a certain strain unit to avoid seriously distorted
level-set function distribution. In this way, we can apply a higher-order time-stepping method such as the sec-
ond-order Adams–Bashforth (AB2) or TVD-RK3 (Total-Variation-Diminishing/3rd-order Runge–Kutta)
[24] in solving the evolution equation of the level-set function.

We remark that the distribution of the initial level-set function /0, satisfying the signed distance function
property, should fulfill the bi-periodicity of the sliding bi-periodic frame. The care should be exercised in
imposing /0 for an initial configuration with many and split droplets. Also, since the drop can be split into
more than two parts possibly located in the opposite side of the boundary and the drop in the opposite side
might be closest to a node, it is necessary to find the actual distance from a node to the object in the sliding bi-
periodic frame context. To do so, we tried all the possible relocations of line segments according to the
No subdivision 2X2 subdivision 4X4 subdivision 

φ=0 φ=0 φ=0 (interface)(interface) (interface)

The interface capturing method by subdivision of the element. The dotted line indicates the interface and the thick bold line
es the line segment that is used to determine the distance function distribution.
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time-dependent periodicity in the sliding bi-periodic frame, when measuring the distance. In addition, in eval-
uating ss at a node (Eq. (29)) using $d (=n), one has to take the average of the $d values from the surrounding
elements for the node. For the node on the boundary, one has to consider also the corresponding element on
the opposite side (generally non-conforming) in the sliding bi-periodic frame. As an alternative way to circum-
vent this problem, we introduce a bit extended computation domain (by the amount of 2e on each boundary).
We copy the distance function data in the opposite side to the corresponding location near the node, by intro-
ducing the additional elements outside the boundary. The additional elements (conforming with the element
on the boundary) together with the elements in the original domain constitute a bit extended domain. Con-
sidering the thickness of the smeared-out numerical delta function d(d) of 2e, the thickness of the additional
element has been chosen as 2e.

3.3. Implementation

3.3.1. Spatial discretization

For the discretization of the weak form, we use the regular quadrilateral element with the continuous bi-
quadratic interpolation (Q2) for the velocity u, the discontinuous linear interpolation (P1) for the pressure p

and the discontinuous bi-quadratic interpolation (Qd
2) for the level-set function /. The boundary integrals

Eqs. (22) and (25) for the horizontal periodicity have been discretized by using the point collocation method
for all nodes (nodal collocation), since the facing elements between C2 and C4 are conforming. For the vertical
sliding periodicity between non-conforming elements on C1 and C4, we use the mortar element technique with
the continuous linear interpolation of kv which has been verified to guarantee the optimal convergence of the
kinematic compatibility and the force balance [7].

3.3.2. Time integration

At t = 0 the level-set function is set to be the initial signed distance function over the entire computational
domain (Eq. (27)). We solve the momentum equation with the constraint equations (Eqs. (22), (23), (25), (26))
to get the velocity distribution at the initial time step. (See Step 4 with Eq. (32) below.) Then, at each time step,
the following procedures are conducted.

Step 1 Get the level-set function /nþ1 by integrating the evolution equation of the level-set function (Eq.
(24)) using un (the explicit third-order accurate TVD-RK3 scheme [24] combined with discontinuous
Galerkin method: DG/TVD-RK3)
½M � /nþ1 � /n

Dt

� �
¼ gðun;/nÞ

½M � /nþ2 � /nþ1

Dt

� �
¼ g un;/nþ1

� �
; /nþ0:5 ¼ 1

4
3/n þ /nþ2
� �

½M � /nþ1:5 � /nþ0:5

Dt

� �
¼ g un;/nþ0:5

� �

/nþ1 ¼ 1

3
/n þ 2/nþ1:5
� �

;

ð30Þ
where [M] is the mass matrix and the vector g is the forcing term which appears in the evolution
equation of / (Eq. (24)).
Step 2 Set the distance function dnþ1 from the level-set function /nþ1 by the direct geometrical re-distancing
scheme described in Section 3.2.

Step 3 Evaluate the interfacial stress tensor snþ1
s , from the given distribution of the distance function dnþ1:
snþ1
s ¼ fðI �rdnþ1rdnþ1Þdðdnþ1Þ: ð31Þ
Step 4 Get the remaining solutions ðunþ1; pnþ1; kh;nþ1; kv;nþ1Þ by solving Eqs. (22), (23), (25), (26) implicitly
using snþ1

s :
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Z Z

�

X
pnþ1r � vdAþ

X
2gD½unþ1� : D½v�dAþ ðkh;nþ1; vð0; yÞ � vðL; yÞÞC4

þ ðkv;nþ1; vðx;HÞ � vðfx� _cHtnþ1g�; 0ÞÞC3
¼ �

Z
X

snþ1
s : D½v�dA; ð32aÞ

Z
X

qr � unþ1dA ¼ 0; ð32bÞ

ðlh; unþ1ð0; yÞ � unþ1ðL; yÞÞC4
¼ 0; ð32cÞ

ðlv; unþ1ðx;HÞ � unþ1ðfx� _cHtnþ1g�; 0ÞÞC3
¼ ðlv; f ÞC3

: ð32dÞ
In the Step 1, Eq. (30) can be solved at the element level, leading to a minimal coupling between elements. In the
Step 4, one needs to solve a large sparse matrix equation with many zeroes on the diagonal which has been solved
by a direct method based on a sparse multifrontal variant of Gaussian elimination (HSL/MA41) [25–27].

4. Bulk stress

The bulk stress is the average stress over the domain and, for Newtonian droplet emulsions in the absence
of inertia, it can be written as: Z Z � �
hri ¼ �P I þ 2gmhDi �
gm � gd

V U
unþ nuð ÞdS � f

V U
nn� 1

3
I dS; ð33Þ
where P is the isotropic pressure and ÆÆæ denotes the volume average quantity in the domain V [28]. In Eq. (33),
the third term is the stress contribution of the drop phase due to the difference in the viscosity and the last term
is the contribution from the interfacial tension f. These two are considered to be the component contribution
[28]. As one expects from Eq. (33), it is crucial to accurately know not only the velocity field but also the con-
figuration (shape and orientation) of the interface for the correct evaluation of the component contribution
However, the accuracy of the interface configuration is limited in nature for the numerical methods based
on the purely Eulerian framework such as the level-set method, when one attempts to compute the bulk stress
directly from Eq. (33). The main reason is the accuracy in evaluation of the outward normal vector n on inter-
face that requires the spatial derivatives of the level-set function or of the signed distance function, which inev-
itably involves an additional approximation.

In this work, we use an alternative expression of the bulk stress that does not require the evaluation of the
normal vector n on the interface, by using the Lagrangian multipliers for the sliding bi-periodic frame con-
straints. The expression is quite similar to that for the particle suspension in sliding bi-periodic frame in
Hwang et al. [7]. First, we note that the bulk stress can be evaluated by the integral of the traction force along
the boundary only. That is,Z Z� �
hri ¼ 1

V oV
xtdS ¼ 1

A oC
xtds ; ð34Þ
where t is traction force acting on the domain boundary oV and the expression in the parenthesis is for the
sliding bi-periodic frame of area A. Then, we express the traction force using the Lagrangian multipliers,
kh and kv, that has been derived in Hwang et al. [7], from the comparison of the standard weak form with
the prescribed traction and the augmented weak form of the momentum balance (Eq. (22)). Finally, one
can obtain the bulk stress expression by the boundary integral of the Lagrangian multipliers that avoids using
the normal vector n on the interface as follows:
hr11i ¼
1

A

Z L

0

ðfx� _cHtg� � xÞkv
xðxÞdxþ 1

H

Z H

0

kh
xðyÞdy; ð35aÞ

hr22i ¼ �
1

L

Z L

0

kv
yðxÞdx; ð35bÞ

hr12i ¼
1

A

Z L

0

ðfx� _cHtg� � xÞkv
yðxÞdxþ 1

H

Z H

0

kh
yðyÞdy

¼ � 1

L

Z L

0

kv
xðxÞdx: ð35cÞ
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We remark that the bulk stress can be evaluated accurately also by the direct domain integral without con-
sidering the interface configuration, when using the CSS formulation for the equi-viscosity case (gm = gd = g).
The stress at a point can be expressed as the constitutive equation of the CSS model: r ¼ �pI þ 2gDþ ss.
Note that the interfacial stress ss is the distributed stress, though narrow, in the vicinity of the interface
and is zero elsewhere. Therefore, one can directly integrate the above constitutive equation over the domain
to evaluate the bulk stress. By comparison with Eq. (33), one get the following identity:
hssi ¼
1

V

Z
V

ssdV ¼ � f
V

Z
U

nn� 1

3
I

� �
dS: ð36Þ
This means that one can evaluate the interfacial contribution to the bulk stress by the direct domain integral
without considering the interface configuration, since it is already included in the interfacial stress ss. In the
present paper, we evaluate the bulk stress using Eqs. (35) and, for the purpose for verification, the domain
integral results will be compared with those from the boundary integrals for equi-viscosity system.
5. Example problems

5.1. A single drop problem

In the first example problem, we verify our formulation and implementation techniques using a single drop
problem. The initial drop shape is circular and the radius R is 0.2. The dimension of the sliding bi-periodic
frame is (L,H) = (1, 1). The shear rate _c and the interfacial tension f are 1 and 0.4, respectively. The matrix
and drop viscosity are the same (gm = gd = 1). The capillary number, an important parameter on the drop
deformation, is defined as the viscous force over the capillary force:
Ca ¼ gm _cR=f;
where R is the undeformed radius of the drop. Therefore the capillary number is 0.5 in the test problem. When
presenting the bulk stress results, we use the shear viscosity �g and the first normal stress difference N 1 which are
defined as
�g ¼ hr12i
gm _c

and N 1 ¼ hr11 � r22i:
The first normal stress difference is related with the anisotropy in the morphology of the droplet emulsion.
Unless otherwise stated, the bulk stress is computed by the boundary integral of the Lagrangian multipliers
(Eqs. (35)) throughout this work. Also, the re-initialization of the level-set function by the distance function
has been performed every 0.5 strain unit for all the works presented here.

5.1.1. Convergence test

The first verification problem is the mesh refinement test. We locate initially the single drop at the center of the
computational domain (0.5,0.5). We use three different finite element meshes: 10 · 10 (denoted by h = 1/10),
20 · 20 (h = 1/20) and 40 · 40 (h = 1/40) and the corresponding time steps Dt are 0.02, 0.01 and 0.005, respec-
tively. In this test, we use the 4 · 4 sub-division of the element in searching the line segments along the interface.
Results are presented in Fig. 3 and in Table 1 for the drop shape at t = 4.8, the shear viscosity and the first normal
stress difference. All three results show good convergence with the mesh refinement. Only the very coarse mesh of
h = 1/10 shows the discrepancy in the shear viscosity and the deformed drop shape. This implies that four ele-
ments inside the drop near the circular shape is not enough for a proper description of its deformation. The depen-
dence of the first normal stress difference on the deformed drop shape is found to be minor in this case.

5.1.2. The sub-division of the element

Secondly, we investigate the effect of degree of sub-division of the element in searching the line segments along
the interface. Again, we locate the single drop at the domain center and we use a h = 1/20 mesh with Dt = 0.01.
Four different degrees of subdivision have been tested: 1 · 1 (no sub-division), 2 · 2, 4 · 4 and 8 · 8. Plotted in
Fig. 4 and listed in Table 2 are again the drop shape at t = 4.8, the shear viscosity and the first normal stress
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Fig. 3. The mesh refinement results from the single drop of radius 0.2 initially at the domain center: (a) the deformed shape of the drop at
t = 4.8; (b) the bulk shear viscosity; (c) the bulk first normal stress difference.

Table 1
The mesh refinement result for the single drop of radius 0.2 initially located at the domain center (Fig. 3)

Mesh Dt Error in the shear viscosity Error in first normal stress difference

10 · 10 0.02 6.04867 · 10�3 2.10774 · 10�3

20 · 20 0.01 2.79408 · 10�4 1.68454 · 10�3

40 · 40 0.005 (–) (–)

Considering the case of h = 1/40 with Dt = 0.005 as the reference data, the 1-norm error of the bulk stress has been presented for the data
in time.
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difference. The necessity of sub-division is obvious, as expected from the interpretation in Fig. 2 in Section 3.2.
Without the sub-division of the element (1 · 1), the calculated drop size is found to be smaller than it should be
and the bulk stress also shows large discrepancy compared with that of other cases. From Fig. 4, one may con-
clude that the 4 · 4 is an optimal choice considering both the computational cost and the accuracy. This result can
be anticipated: the line segments in the 1 · 1 and 2 · 2 sub-divisions cannot utilize the full geometrical informa-
tion from the discontinuous quadratic interpolation that has been used for /.

5.1.3. The split drop
Next, we compare the result of the single drop initially located at the center of the domain (0.5,0.5) and that

initially located at the corner of the domain (0,0). In the latter case, the drop is split into four parts initially. By
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Fig. 4. The effect of the degree of sub-division of the element in finding the line segments along the interface using the single drop of radius
0.2 initially at the domain center: (a) the deformed shape of the drop at t = 4.8; (b) the bulk shear viscosity; (c) the bulk first normal stress
difference.

Table 2
The effects of the degree of sub-division of the element in finding line segments along the interface using the single drop of radius 0.2
initially located at the center (Fig. 4)

Number of sub-division Error in the shear viscosity Error in first normal stress difference

1 · 1 7.63792 · 10�3 2.35970 · 10�2

2 · 2 1.78866 · 10�3 4.24901 · 10�3

4 · 4 3.23887 · 10�4 9.39442 · 10�4

8 · 8 (–) (–)

The fixed mesh h = 1/20 and the time step Dt = 0.01 have been used for comparison and, considering the 8 · 8 subdivision data as the
reference data, the 1-norm error of the bulk stress has been presented for the data in time.
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definition of the sliding bi-periodic frame, the two problems should show identical solutions for the deforma-
tion shape and the quantities of the bulk shear stress and the first normal stress difference. This is quite an
important test in this work, since there should not be any restriction on the droplet configuration, i.e., droplets
should be able to cross any part of the computation domain boundary freely. In this way, the complicated wall
interaction can be avoided and then the sliding frame plays the role of a representative ‘‘window’’ for flowing
materials.
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Considering the results from the drop initially located at the center with h = 1/40 and Dt = 0.005 as the ref-
erence, we presented the mesh refinement results of the drop initially located at the corner for the drop defor-
mation shape at t = 4.8 and the bulk stress responses in Fig. 5 and in Table 3. For the corner drop case, we use
again the fluid meshes of 10 · 10 (denoted by h = 1/10), 20 · 20 (h = 1/20) and 40 · 40 (h = 1/40) and the cor-
responding time steps Dt are 0.02, 0.01 and 0.005, respectively. We use the 4 · 4 sub-division of elements for all
these simulations. Note that, for t = 4.8, the upper (and thereby lower) drop interfacial segments travel more
than two turns on the sliding boundary. In Fig. 5(a), we translated the deformed shape of the drop initially
located at the center to overlap the results from the corner drop for a proper comparison. The results of
the deformed shape and the bulk shear viscosity for the split drop show excellent mesh convergence to the
reference one. There can be observed a small discrepancy in the first normal stress difference (Table 3). Again,
for the drop radius 0.2 initially located at the corner, the h = 1/10 mesh has been found not to be enough to
predict the drop deformation shape as well as the bulk shear viscosity.

5.1.4. Computation of the bulk stress

The final verification is about the computation of the bulk stress. In Section 4, we mentioned that there
are two methods in evaluating the bulk stress: one is the boundary integral using the Lagrangian multipliers
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Fig. 5. The comparison of the results of the single drop R = 0.2 initially at the center of domain (0.5,0.5) with those at the corner of the
domain (0,0): (a) the deformed shape of the drop at t = 4.8; (b) the bulk shear viscosity; (c) the bulk first normal stress difference. The
deformed shape of the drop initially at the domain center has been translated to the boundary for better comparison in (a).



Table 3
The comparison of the bulk stress results of the single drop of radius 0.2 initially at the domain center and the corner of the domain (Fig. 5)

Mesh Dt Error in the shear viscosity Error in first normal stress difference

10 · 10 (corner) 0.02 4.17208 · 10�3 3.86897 · 10�3

20 · 20 (corner) 0.01 6.58910 · 10�4 1.44879 · 10�3

40 · 40 (corner) 0.005 5.51008 · 10�4 5.07814 · 10�3

40 · 40 (center) 0.005 (–) (–)

Considering the case of h = 1/40 with Dt = 0.005 when the drop located at the domain center as the reference data, the 1-norm error of the
bulk stress for the drop initially at the corner has been presented for the data in time.
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(Eqs. (35)) and the other is the domain integral using the continuous surface stress ss from the CSS formula-
tion (Eqs. (33) and (36)). We use the h = 1/20 mesh with Dt = 0.01 and the 4 · 4 sub-division of the element for
the single drop at the center of the domain. The bulk shear viscosities and the first normal stress difference
from the two different methods are presented in Fig. 6. The two results coincide exactly with each other which
verifies the proper implementation of the sliding bi-periodic boundary condition and the bulk stress evaluation
in the bi-periodic matrix/drop mixture system.

5.2. Coalescence of two drops in a sliding bi-periodic frame

The second example problem is constructed to investigate the effect of hydrodynamic and interfacial inter-
action between two drops, especially, the coalescence of the two drops. Also we are interested in the bulk stress
response during the coalescence process. The coalescence relies on an agent to push drops together (e.g. body
force, external flow), as well as short-range molecular force (e.g. van der Waals attraction) that rupture the
thin liquid film that separates drop interfaces prior to confluence [29]. If the van der Waals force is not con-
sidered, the drop coalescence will be the numerical artifact due to the course mesh in between droplets in the
interface-capturing method like the level-set method used here [30,31]. Nevertheless, in this study, results are
presented for drop coalescence as the same way as done in Ref. [9] with neglecting the van der Waals forces
between two droplets in order to see the possibilities of coalescence and typical flow fields before and after
coalescence together with resultant bulk stress responses.

The problem is stated as follows: two identical drops of radius R = 0.2 are suspended freely in a sliding bi-
periodic frame of the size 1 · 1. The viscosity of the drop is the same as that of the matrix and the surface
tension f is 5 and the applied shear rate _c is 1. The capillary number Ca is 0.1. The initial drop positions
are chosen symmetrically: (0.35,0.65) and (0.65, 0.35). Since the reference velocity has been specified zero at
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Fig. 6. The comparison of (a) the bulk shear viscosity and (b) the first normal stress by two different calculation techniques: the domain
integral method based on the CSS formulation (Eqs. (33) and (36)) and the boundary integral method in Eqs. (35).
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the center of the left domain boundary (C4), the upper left drop is supposed to move to the positive x direction
and the lower right one to the negative x direction. We tested two different meshes of h = 1/20 and h = 1/50
and the corresponding time steps Dt are 0.005 and 0.001, respectively.

Fig. 7 shows the computed drop shapes at every t = 0.1 time elapse from t = 0 using the two meshes. The drop
shape is represented by the line segments satifying / = 0 along the interface. The oscillation in the coarse mesh
result at t = 0 is caused by the fact that the distance between the two drop interfaces is too small compared with
the size of the element. The coalescence has been finished within t = 0.3 and then the merged drop becomes cir-
cular again. (As mentioned, this coalescence is a numerical artifact and is an inherent limitation of the interface
capturing method like the level-set method used here.) The phenomena observed from the two meshes are mostly
identical. We see some discrepancy of the coarse mesh problem during the fast coalescence in the early period.
Plotted in Fig. 8 are the bulk shear viscosity and the first normal stress difference evaluated during this coalescence
process. We presented the bulk responses for both coarse and fine meshes for comparison. The basic trend are the
same: during fast coalescence, the shear viscosity and the first normal stress difference decrease fast and then they
recover the values for the large single merged drop. Though the behavior is nearly identical, there can be observed
a small discrepancy in the result of the coarse mesh especially in the early period.

One interesting phenomena is the negative value of the shear viscosity and the first normal stress difference
during the early phase of the coalescence. The negative value of the shear viscosity indicates that the shear
stress developed by the interfacial-tension-driven flow, opposed to the direction of the given shear flow, dom-
inates over the shear stress due to the assigned shear rate in the early period of the coalescence. The interfacial-
tension-driven flow is spontaneous and it lowers the level of the shear stress, until the single merged drop
restores the circular shape. As the single merged drop stretches due to the shear flow, the behavior of the shear
viscosity becomes similar to that of the single particle problem presented in Section 5.1. The negative first nor-
mal stress in the system implies that the coalescence generates a squeezing force. Imagine a simple shear flow
confined two parallel plates that contain the droplet emulsions. Then the upper plate tends to be pushed down
due to this negative first normal stress during the coalescence of relatively large drops. The first normal stress
difference is restored positive, as in the single drop problem, when the single merged drop starts to stretch in
the flow direction. This interpretation can be understood by looking at the instantaneous velocity field at
t = 0.2 (near the minimum of the shear viscosity and the first normal stress difference) presented in Fig. 9.

5.3. The multiple droplet problem

Now we proceed to a more complex problem: six randomly distributed drops in the sliding bi-periodic
frame initially. The main objective here is to demonstrate the feasibility of the present work for the application
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Fig. 7. The coalescence of the two drops: (a) with the h = 1/20 mesh and (b) with the h = 1/50 mesh. The computed drop shapes are
represented by the line segments along the interface at every t = 0.1 time elapse.
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Fig. 9. The velocity field during the coalescence of the two drops (t = 0.2 using h = 1/50 mesh).

630 S.J. Kim, W.R. Hwang / Journal of Computational Physics 225 (2007) 615–634
to rheology of concentrated droplet emulsions with complicated drop/fluid and drop/drop interactions and
with the interfacial tension. The problem is stated as follows: we initially placed six randomly distributed cir-
cular drops with different radii, R = 0.075, 0.1 (two drops), 0.125, 0.15 and 0.175, in a sliding bi-periodic frame
of size 1 · 1. The viscosity of the drop is the same as the matrix fluid and the surface tension f is given 0.05. We
use a h = 1/50 mesh with the time step Dt = 0.005. The problem is composed of two step procedures: first, we
applied the simple shear with the shear rate _c ¼ 1 for t = 6 and then we stopped the flow to investigate the
relaxation phenomena.

Presented in Fig. 10 are the morphological evolution of the droplet deformation followed by the relaxation.
As mentioned, the droplets elongate until t = 6 due to the shear flow and then they start to relax. Even at
t = 40, the relaxation is still present especially for large drops. In Fig. 11, we plotted the distribution of the
distance function d and the 11-component of the interfacial stress ss over the domain at the final time step



Fig. 11. The distributions of (a) the distance function d and (b) the 11-component of the continuous surface stress ss for the final droplet
configuration in the multiple droplet example problem (t = 40.0).
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Fig. 10. The morphological evolution of six randomly distributed drops under the start-up of simple shear flow followed by the relaxation.
The shear flow was stopped at t = 6.
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Fig. 12. The bulk shear stress and the first normal stress difference in the multiple droplet example problem.
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t = 40. One can compare the drop deformation pattern in Fig. 10(i) with these results. As shown in Fig. 11(a),
one can see that the signed distance function property is well satisfied with this concentrated droplet emulsion
problem in the sliding bi-periodic frame. Also the continuous surface stress distribution along the periodic
boundary and on the interface of the droplet indicates the appropriateness of our formulation/
implementation.

Finally, we presented the bulk shear stress Ær12æ and the first normal stress difference with respect to time in
Fig. 12. Both stresses increase as droplets elongate until t = 6 and then sudden decrease has been observed in
both stress results. After the cessation of the flow during relaxation, the interfacial contribution constitutes a
major contribution to the bulk stress, as expected from Eq. (33). This interfacial contribution will eventually
vanish as droplets becomes circular as well. The bulk stresses in Fig. 12 show such a relaxation process.
A similar experiment was performed by Cristini et al. [32] to investigate the transient stress behavior under
the start-up of shear flow followed by the relaxation at a certain time. Though not directly comparable
(the experiment is 3D), their experimental data shows much stiffer decrease of the shear stress after stopping
the flow than the first normal stress difference, which is identical to the result in Fig. 12 in the present work.

6. Conclusions

In this work, we developed a direct numerical simulation technique for the droplet emulsion in the sliding
bi-periodic frame, which is quite well suited for studying rheology and micro-structural morphological devel-
opments of such a system in simple shear flow. In our formulation, the level-set method with the continuous
surface stress formulation has been combined, for description of the interfacial tension, with the sliding bi-
periodic frame based on the finite-element method. The present scheme can be extended relatively easily to
the viscoelastic liquid–liquid emulsion which is of great importance in polymer industry. We use a direct geo-
metrical re-distancing method to obtain the signed distance function using line segments along the interface
that satisfies the sliding bi-periodicity of the computational domain. The line segment representing the inter-
face has been searched on the sub-divided element boundary. We use the mortar element technique for imple-
mentation of the sliding periodicity. The third-order non-oscillating TVD-RK3 time-stepping method has
been combined with the discontinuous Galerkin method in solving the advection equation of the level-set
function. In our formulation the bulk stress can be evaluated by the line integral of the Lagrangian multipliers
used for the periodicity constraint.

Concentrating on 2D droplet emulsion problems, we tested numerical examples of the single, two and mul-
tiple drops in a sliding bi-periodic frame, representing a large number of repeated structures, for the verifica-
tion of the code and also for the presentation of the feasibility of our scheme. In the single drop problem, we
proved the mesh refinement of our solution and investigated the effect of the number of sub-division of the
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element on the solution, when finding line segments along the interface. We also verified the accuracy and con-
vergence of the solution for the split drop, which crosses the computational domain boundary. This is a quite
important test in the bi-periodic simulation of a representative unit cell problem. The comparison of the bulk
stresses, evaluated by the domain integral of equi-viscous system with the CSS formulation and the boundary
integral of the Lagrangian multipliers, verifies the proper implementation of the sliding bi-periodic boundary
condition and the bulk stress evaluation in the bi-periodic matrix/drop mixture system.

Using two droplets in a sliding bi-periodic frame, we demonstrated the feasibility of capturing the morpho-
logical development during the coalescence process in the absence of the short-range van der Waals force.
During the coalescence, an instantaneous decrease of the shear viscosity and the first normal stress difference
has been observed due to the compressive flow in the direction opposed to the given shear flow generated by
the coalescence. Finally in the multiple droplet problem, we investigated the deformation and the relaxation of
droplets by the cessation of the flow followed by simple shear flow for a certain period, as a model droplet
emulsion problem.
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